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1 Introduction

At present, the necessity of next-to-leading order (NLO) calculations of QCD backgrounds

for the Large Hadron Collider (LHC) is unquestionable. Much effort has been put into this

problem, but until only recently, it seemed that the task is so huge that theory will stay

behind the needs of experimentalists for quite some time. Whereas impressive calculations

have been done with traditional methods based on Feynman diagrams [1–21], it is the new

unitarity based methods [22–28] that provide some hope for accelerated progress. By now,

there are three major groups with advanced software for virtual corrections [29–41], closely

trailed by independent efforts [42]. Moreover, a full automate based on traditional methods

is being built [43–46]. In any case, first successes have been recorded in [47–52] and look

very promising.

Any NLO calculation consists of two parts, which are separately infrared (soft/collinear)

divergent, the virtual corrections and real radiation. In order to allow for Monte Carlo

simulations, two general classes of approaches have been devised, namely phase space slic-

ing [53–58] and subtraction [59–65]. Currently, the latter approach seems to have proven

its superiority. Its most accepted version, dipole subtraction, has been presented in the

massless case in [62] and later for massive partons in [65] (see also [66]). There are a few

completely automated implementations of this method, which have been presented in the

literature [67–70], but only one is available for public use [70]. Moreover, it has often been

criticized that the large number of terms in the dipole subtraction formalism is a practical
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problem in realistic calculations, since it leads to a high computational costs. With the

present publication we want to remedy both problems.

The basic idea is to allow for the same optimizations as those used in leading order

simulations. The most important of these, besides phase space optimization, is the replace-

ment of exact summation over external state polarizations by a probabilistic approach. In

order not to ruin the Monte Carlo error estimates, the treatment must be consistent be-

tween the real emission contribution and the appropriate subtraction. This is the main

subject of the present publication. Note that partial extensions of the dipole subtraction

formalism to polarized states have been discussed before in [71, 72], but they were only

concerned with scattering of polarized fermions or photons. The formulae from these stud-

ies are consistent with ours, when summed over the polarization of the gluon (or photon as

discussed by these authors). Besides giving the appropriate formulae, we implement them

within the framework of a fully fledged Monte Carlo generator, Helac-Phegas [73–75],

which has, on its own, already been extensively used and tested in phenomenological stud-

ies (see for example [76–79]). We demonstrate the potential of the software by performing

some realistic simulations, in particular of the process gg → tt̄bb̄g.1 We also argue that the

inclusion of the subtraction terms does not increase the total evaluation time per phase

space point by large factors. In fact, the actual source of the substantially longer eval-

uation times in comparison to a leading order evaluation is the more complicated phase

space, requiring orders of magnitude more accepted points to reach the same accuracy.

In consequence, one can either further improve the evaluation time per phase space point

by using color sampling for example (trivial in our approach), or concentrate on a better

description of the phase space. We leave both tasks to future studies.

The paper is organized as follows. In the next section, we discuss the rôle and treat-

ment of polarization in Monte Carlo generators, which leads us to the motivation for the

present study. Subsequently, we describe the behavior of cross sections in soft and collinear

limits, when polarized partons are present. Section 4 contains our main results, namely

the dipole subtraction formulae for polarized external partons. Section 5, on the other

hand, presents a few details of our implementation within Helac-Phegas, as well as some

realistic simulation results. We conclude in section 6.

2 Polarization in Monte Carlo simulations

Most practical problems, which are solved with Monte Carlo simulations involve unpolar-

ized particles. In consequence, it is necessary to sum/average over the spin of the incoming

and outgoing states. This increases the computational complexity of a calculation by a

factor, which can, in principle, amount to 2n23n3 , where n2 and n3 are the numbers of

particles with 2 and 3 polarization states respectively. There are usually some symmetries,

like the chiral symmetry in the massless fermion approximation, or supersymmetry in the

pure gluon case, which reduce the number of degrees of freedom. Moreover, with modern

recursive methods for tree level matrix element evaluation it is possible to reuse parts of

1While this publication was being prepared, a complete study of the full hadronic process has been

published [21].

– 2 –



J
H
E
P
0
8
(
2
0
0
9
)
0
8
5

a result to speed up the summation. Nevertheless, deterministic, exact methods have an

inherent slow down factor, which cannot be completely removed.

Since the phase space integration is already done with probabilistic methods, and

the polarization sum is not coherent, it is clearly desirable to replace this sum by some

kind of random sampling as well. The approach, which is most often used is to sample over

helicity. The main disadvantage here is that different helicity configurations contribute very

differently to the final result. In fact, several orders of magnitude between contributions

are usually observed. If we use a flat distribution to pick a helicity configuration, the final

variance of a result will be increased by a substantial factor, not to mention the increase in

the number of generated phase space points to obtain a given error estimate. The situation

can be improved by using stratified sampling, which is usually also used for phase space

optimization. One of the possible algorithms, which we implemented in our software, has

been presented in [80] (more details will follow in section 5).

Another approach, which is substantially easier to implement has been proposed

in [81, 82]. The idea is to replace summation over helicity by integration over a phase.

For example, a gluon polarization state can be written as

ǫµ(k, φ) = eiφǫµ(k,+) + e−iφǫµ(k,−) , (2.1)

where ǫµ(k,±) are helicity eigenstates. The sum over the helicity of this gluon fulfills the

following identity
∑

λ

|Mλ|2 =
1

2π

∫ 2π

0
dφ|Mφ|2 . (2.2)

Notice that the range of integration could have been reduced to [0, π] with the same result.

We keep 2π as the upper bound in order to accommodate the third degree of freedom of

massive gauge bosons, which is then added in eq. (2.1) without any phase factor. Obviously,

we do not expect large differences in the values of |Mφ|2, as function of φ, since for every

value of φ we have both helicities contributing. In consequence, a flat distribution in the

Monte Carlo sampling should provide satisfactory results, which has been confirmed on

specific examples in [81, 82] and also in our studies.

At this point, we should decide which approach to chose for dipole subtraction. As

we will show in the next section, helicity eigenstates provide particularly simple formulae

for this problem, which are only minor modifications of the original formalism. Therefore,

we trade the simplicity of the implementation of the Monte Carlo integration over general

polarizations with a phase, for simple dipole subtraction formulae. Practice also shows that

whereas helicity sampling is superior for a small number of helicity configurations, with

many particles general polarizations with phases start to dominate. The reason is that

at some point the algorithm of helicity sampling cannot find the optimal distribution. In

our case, where the number of partons is relatively low, since we are always thinking of a

next-to-leading order calculation, which is bound in complexity by our ability to compute

virtual corrections, the large number of final states comes from electroweak decays into

colorless states. We found it optimal to use a hybrid model, where partons have definite

helicities and remaining particles have general polarizations with phases.
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3 Soft and collinear limits for polarized partons

In view of the considerations of the previous section, we have two possibilities to treat the

polarization of partons. Indeed, we can either use arbitrary polarization vectors, or helicity

eigenstates. Let us first show that, when using the latter the soft limit is particularly simple.

It is well known that the exchange of a soft gluon between two partons (quarks or

gluons) can be approximated by eikonal currents

|Mm+1|2 ∼ m〈. . . |Jµ,a †Ja
µ| . . . 〉m , (3.1)

where we have omitted irrelevant constants and the current J is given by

Jµ,a =
∑

i

T a
i

pµi
pik

, (3.2)

with k the momentum of the soft gluon and pi the momentum of a hard parton. The color

charge operators T a are defined as in [62], i.e. for two given color space vectors |a1, . . . , am〉
and |b1, . . . , bn〉, we have

〈a1, . . . , ai, . . . , am|T c
i |b1, . . . , bi, . . . , bm〉 = δa1b1 . . . T

c
aibi

. . . δambm , (3.3)

where T abc = ifbac (color charge matrix in the adjoint representation) if parton i is a

gluon, T aαβ = taαβ (color charge matrix in the fundamental representation) if parton i is

an outgoing quark, and T aαβ = −taβα if parton i is an outgoing anti-quark. The charges of

in-going partons are defined by crossing. With this definition

∑

i

T a
i = 0 , (3.4)

which means that no signs are needed in eq. (3.2), and the current is both transverse and

self-conjugate

kµJ
µ,a = 0 , Jµ,a † = Jµ,a . (3.5)

While it is clear that the eikonal approximation, and thus also the soft limit, is independent

of the polarization of the hard partons, if the soft gluon is polarized on the other hand,

we have

Jµ,a †Ja
µ −→ −Jµ,a †Jν,aǫµ(k, λ)ǫ∗ν(k, λ) . (3.6)

Crucially, for helicity eigenstates

ǫ∗µ(k,+) = eiψǫµ(k,−) , (3.7)

where ψ is some phase, which can be freely chosen. With this relation and the properties

of the eikonal current, it is easy to show that

Jµ,a †Jν,aǫµ(k,+)ǫ∗ν(k,+) = Jµ,a †Jν,aǫµ(k,−)ǫ∗ν(k,−) =
1

2
Jµ,a †Ja

µ . (3.8)

Thus, we have shown that the soft limit is independent of the helicity of the soft gluon.

This is important, because this means that we can introduce helicity into the unpolarized
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dipole subtraction formulae without explicit reference to the polarization vectors of the soft

gluons. Unfortunately, for general polarization vectors, such as those defined in section 2,

there is no relation of the type of eq. (3.7). In consequence, if we wanted to use general

polarization vectors, a less trivial modification of the dipoles would be needed.

Let us now turn to the collinear limit. It is in principle possible to work directly

with amplitudes, however due to the treatment of the soft limit, the original dipole sub-

traction formalism has been formulated for squares of matrix elements. Here we shall

proceed similarly.

We consider the quasi-collinear limit for massive partons and the corresponding true

collinear limit in the massless case. For a pair {i, j} of outgoing partons, which become

collinear, we assume the following momentum parameterization

pµi = zpµ + kµ⊥ −
k2
⊥ + z2m2

ij −m2
i

z

nµ

2pn
, (3.9)

pµj = (1 − z)pµ − kµ⊥ −
k2
⊥ + (1 − z)2m2

ij −m2
j

1 − z

nµ

2pn
, (3.10)

where p2
i = m2

i , p
2
j = m2

j and p2 = m2
ij, n is a light-like auxiliary vector, and k⊥ is

the transverse component orthogonal to both p and n, which parameterizes the collinear

limit. The parton of mass mij is the virtual particle, which splits into i and j. Its nature

is uniquely determined in QCD. For example, if i is a quark and j is an anti-quark, then

mij = 0 corresponds to a virtual gluon. As in [65], we define the limit by a uniform rescaling

k⊥ → αk⊥ , mi → αmi , mj → αmj , mij → αmij , (3.11)

with α→ 0. The matrix element behaves in this limit as

m+1〈. . . , {pi, λi}, . . . , {pj , λj}, . . . || . . . , {pi, λi}, . . . , {pj , λj}, . . . 〉m+1 α̃→0
(3.12)

1

α2

8παs

(pi + pj)2 −m2
ij

m〈. . . , {p, λ′}, . . . |P̂eij,i
(z, k⊥, {m}, {λ})| . . . , {p, λ}, . . . 〉m ,

where P̂ are generalized Altarelli-Parisi kernels (here in four dimensions), {m} is the set

of masses, and {λ} is the set of helicities, whereas ĩj is the emitter parton (we will call the

original pair, the emitter pair).

Whereas the unpolarized massive case of P̂ has been presented in [65], the polarized

massless case can be read to a large extent already from [83]. Here we present the formulae,

which contain all the information

〈λ′|PQQ(z, k⊥,mQ, λQ, λg)|λ〉 = (3.13)

CF

{
δλλQ

(z2 + δλQλg
(1 − z2))

1 − z
− δλλg

δ′λQλg

m2
Q

pQpg

−
[(
δλλQ

δλQλg
− δ′λλQ

δ′λQλg

) 1

z
+ δ′λQλg

(δλλQ
− δλλg

)z

]
m2
Q

2pQpg

}
δλ′λ ;

– 5 –
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〈λ′|PgQ(z, k⊥,mQ, λQ, λQ̄)|λ〉 = (3.14)

TR

{
δλ′λδ

′
λQλQ̄

2
−

2δ′λQλQ̄
(k⊥ · ǫ(p, λ′))∗ (k⊥ · ǫ(p, λ))

(pQ + pQ̄)2

+δλ′λ

[
δ′λQλQ̄

(
δλλQ

z + δλλQ̄
(1 − z) − 1

2

)

+

((
δλλQ

− δ′λQλQ̄

) 1

z
+
(
δλλQ̄

− δ′λQλQ̄

) 1

1 − z

)
m2
Q

(pQ + pQ̄)2

]}
;

〈λ′|Pgg(z, k⊥, λi, λj)|λ〉 = (3.15)

CA

{
δλ′λ

(
δλλi

1 − z
+
δλλj

z
− 2δ′λiλj

)
− 2δ′λiλj

z(1 − z)
(k⊥ · ǫ(p, λ′))∗ (k⊥ · ǫ(p, λ))

k2
⊥

+δλ′λ
[
δλλi

− δλλj

]
(1 − 2z)

}
;

where δ′λiλj
= 1 − δλiλj

. Notice that the contents of the square brackets vanish upon

summation over the helicities of the emitter partons. Because the soft limit remains un-

touched with helicity eigenstates, the above formulae alone can be used to modify the

dipole subtraction terms. An important difference to previous studies is that we do not

use open Lorentz indices, but contract directly with polarization vectors. This is allowed

by the transversality of the k⊥ vector (and its counterparts in the final dipole subtraction

formulae) and of the matrix element. Moreover, we used the phase conventions for the po-

larization vectors as given in [73], which are also consistent with those of MadGraph [84].

Any difference in conventions should be relatively easy to compensate.

Notice finally, that the initial state splittings can be derived from the above formulae

by crossing.

4 Dipole subtraction with helicity eigenstates

The dipole subtraction formalism has been described to great extent in [62] and [65]. We

do not repeat this discussion and assume that the reader is familiar with the main concepts.

On the other hand, we give all the necessary formulae for a complete implementation in

a numerical program, i.e. not only the modified splitting kernels, but also the momen-

tum remappings.

The starting point of our exposition is the subtracted real radiation contribution to a

next-to-leading order cross section

∫
dΦ
∑

(|Mm+1|2 −D) , (4.1)

where the sum runs over polarizations and colors, and an average over the initial state

colors and polarizations is understood together with a symmetry factor for the final states.

We have also omitted the jet functions in the phase space integration dΦ, since they are

– 6 –
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irrelevant at the moment. In this somewhat schematic expression, the dipole contribution

can be decomposed as

D =
∑

{i,j}

∑

k 6=i,j

Dij,k +
∑

{i,j}

∑

a

Da
ij +

∑

a,i

∑

j 6=i

Dai
j +

∑

a,i

∑

b6=a

Dai,b , (4.2)

where i, j, k denote final states, whereas a, b initial states. A pair of indices corresponds

to the emitter pair and a single index specifies the spectator. The fact that the sum in

eq. (4.1) runs over the difference of the real emission matrix element squared and the dipole

subtraction contribution is not a coincidence of course, since we want to have a cancellation

of divergences for each helicity configuration. The formulae that we present in the following

guarantee that a contribution corresponding to a given helicity configuration of the partons

is finite in soft and collinear limits. In principle, we could also give the formulae in a form,

in which the finiteness would extend to a given color flow, but we refrain from this in the

present work.

Clearly, in each of the dipoles in eq. (4.2) all the polarizations, but those of the emitter

pair, must be taken over from the matrix element Mm+1. Since the sums run over all

partons and our formulae are only valid for helicity eigenstates, we have to require that

all partons be in helicity eigenstates. On the other hand, there is no restriction on the

polarization states of the remaining particles.

Finally, let us stress that since we are only interested in the subtraction for the real

emission, we work exclusively in four space-time dimensions.

4.1 Final state emitter and final state spectator

The single dipole contribution is

Dij,k(. . . , {pi, λi}, . . . , {pj , λj}, . . . , {pk, λk}, . . . ) = − 1

(pi + pj)2 −m2
ij

(4.3)

×
∑

λ′,λ

〈. . . , {p̃ij , λ′}, . . . , {p̃k, λk}, . . . |
T k · T ij

T 2
ij

Vij,k| . . . , {p̃ij , λ}, . . . , {p̃k, λk}, . . . 〉 ,

where the momentum remapping is given by (Q = pi + pj + pk)

p̃µk =

√
λ(Q2,m2

ij ,m
2
k)√

λ(Q2, (pi + pj)2,m
2
k)

(
pµk −

Qpk
Q2

Qµ
)

+
Q2 +m2

k −m2
ij

2Q2
Qµ , (4.4)

p̃µij = Qµ − p̃µk , (4.5)

with λ the Källen function

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz . (4.6)

There are three cases to consider

– 7 –



J
H
E
P
0
8
(
2
0
0
9
)
0
8
5

• Q → Q(pi, λi) + g(pj, λj), with mi = mij = mQ, mj = 0 and

〈λ′|VQg,k|λ〉 = 8παsCF (4.7)

×
{

δλλi

1 − z̃i(1 − yij,k)
− δ′λiλj

ṽij,k
vij,k

[
δλλi

(1 + z̃i) + δλλj

m2
Q

pipj

]

− ṽij,k
vij,k

[
(δλλi

δλiλj
− δ′λλi

δ′λiλj
)
1

z̃i
+ δ′λiλj

(δλλi
− δλλj

)z̃i

]
m2
Q

2pipj

}
δλ′λ ;

• g → Q(pi, λi) + Q̄(pj, λj), with mi = mj = mQ, mij = 0 and

〈λ′|VQQ̄,k|λ〉 = 8παsTR (4.8)

× 1

vij,k

{
δλ′λ

[
δ′λiλj

2
− κ

2

(
z+z− −

m2
Q

(pi + pj)2

)]

−
2δ′λiλj

(pi + pj)2

[
z̃
(m)
i pµi − z̃

(m)
j pµj

] [
z̃
(m)
i pνi − z̃

(m)
j pνj

]
ǫ∗µ(p̃ij , λ

′)ǫν(p̃ij , λ)

+δλ′λ

[
δ′λiλj

(
δλλi

z̃i + δλλj
z̃j −

1

2

)

+

(
(δλλi

− δ′λiλj
)
1

z̃i
+ (δλλj

− δ′λiλj
)

1

z̃j

)
m2
Q

(pi + pj)2

]}
;

• g → g(pi, λi) + g(pj, λj), with mi = mj = mij = 0 and

〈λ′|Vgg,k|λ〉 = 8παsCA (4.9)

×
{
δλ′λ

[
δλλi

1 − z̃i(1 − yij,k)
+

δλλj

1 − z̃j(1 − yij,k)
−

2δ′λiλj
− κz+z−/2

vij,k

]

+
δ′λiλj

vij,k

1

pipj

[
z̃
(m)
i pµi − z̃

(m)
j pµj

][
z̃
(m)
i pνi − z̃

(m)
j pνj

]
ǫ∗µ(p̃ij , λ

′)ǫν(p̃ij , λ)

+
δλ′λ
vij,k

[
δλλi

(1 − 2z̃i) + δλλj
(1 − 2z̃j)

]
}

;

where δ′λiλj
= 1− δλiλj

. In each case, the content of the last square bracket vanishes upon

summation over helicities of the emitter pair. The remaining terms have exactly the same

structure as in [65] and are only modified by delta’s in helicity. The variables z̃i, z̃j and

yij,k are defined as follows

z̃i = 1 − z̃j =
pipk

pipk + pjpk
, (4.10)

yij,k =
pipj

pipj + pipk + pjpk
. (4.11)

The gluon splitting requires additionally

z̃
(m)
i = z̃i −

1

2
(1 − vij,k) , z̃

(m)
j = z̃j −

1

2
(1 − vij,k) , (4.12)
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where vij,k is the relative velocity between the emitter pair with momentum pi + pj and

the spectator with momentum pk, and can be expressed as

vij,k =

√
[2µ2

k + (1 − µ2
i − µ2

j − µ2
k)(1 − yij,k)]2 − 4µ2

k

(1 − µ2
i − µ2

j − µ2
k)(1 − yij,k)

, (4.13)

with

µn = mn/
√
Q2 . (4.14)

Similarly, the relative velocity between the emitter with momentum p̃ij and the spectator

with momentum p̃k can be written as

ṽij,k =

√
λ(1, µ2

ij , µ
2
k)

1 − µ2
ij − µ2

k

. (4.15)

Moreover, the terms proportional to the free parameter κ require the introduction of

z±(yij,k) =
2µ2

i + (1 − µ2
i − µ2

j − µ2
k)yij,k

2[µ2
i + µ2

j + (1 − µ2
i − µ2

j − µ2
k)yij,k]

(1 ± vij,ivij,k) , (4.16)

where vij,i is the relative velocity between pi + pj and pi

vij,i =

√
(1 − µ2

i − µ2
j − µ2

k)
2y2
ij,k − 4µ2

iµ
2
j

(1 − µ2
i − µ2

j − µ2
k)yij,k + 2µ2

i

. (4.17)

At this point it is important to comment on the freedom in the modification of the original

formulae of [65]. Since we only require that these be recovered upon summation over

helicities, arbitrary factors can be introduced as long as they do not spoil the collinear

and/or soft limits. We have used this freedom to make the terms, which vanish upon

helicity summation, resemble those that do not. Thus, for example, we have introduced

the coefficient ṽij,k/vij,k in front of the last square bracket in eq. (4.7), and similarly 1/vij,k
in eq. (4.9). A similar freedom exists in the treatment of the parameter κ. As it represents

a soft/collinear safe modification, it is unconstrained in the singular limits, and we are free

to distribute it among different polarizations as we please. Here, we have chosen an even

distribution among the four possible combinations.

4.2 Final-state emitter and initial-state spectator

The single dipole contribution is

Da
ij(. . . , {pi, λi}, . . . , {pj , λj}, . . . ; {pa, λa}, . . . ) = − 1

(pi + pj)2 −m2
ij

1

xij,a
(4.18)

×
∑

λ′,λ

〈. . . , {p̃ij , λ′}, . . . ; {p̃a, λa}, . . . |
T a · T ij

T 2
ij

Va
ij| . . . , {p̃ij , λ}, . . . ; {p̃a, λa}, . . . 〉 ,

where

xij,a =
papi + papj − pipj + 1

2(m2
ij −m2

i −m2
j)

papi + papj
, (4.19)
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and the momentum remapping is given by

p̃µa = xij,ap
µ
a , (4.20)

p̃µij = pµi + pµj − (1 − xij,a)p
µ
a . (4.21)

There are three cases to consider

• Q → Q(pi, λi) + g(pj, λj), with mi = mij = mQ, mj = 0 and

〈λ′|Va
Qg|λ〉 = 8παsCF (4.22)

×
{

δλλi

1 − z̃i + (1 − xij,a)
− δ′λiλj

(
δλλi

(1 + z̃i) + δλλj

m2
Q

pipj

)

−
[
(δλλi

δλiλj
− δ′λλi

δ′λiλj
)
1

z̃i
+ δ′λiλj

(δλλi
− δλλj

)z̃i

]
m2
Q

2pipj

}
δλ′λ ;

• g → Q(pi, λi) + Q̄(pj, λj), with mi = mj = mQ, mij = 0 and

〈λ′|Va
QQ̄

|λ〉 = 8παsTR (4.23)

×
{
δλ′λδ

′
λiλj

2
−

2δ′λiλj

(pi + pj)2

[
z̃ip

µ
i − z̃jp

µ
j

] [
z̃ip

ν
i − z̃jp

ν
j

]
ǫ∗µ(p̃ij , λ

′)ǫν(p̃ij, λ)

+δλ′λ

[
δ′λiλj

(
δλλi

z̃i + δλλj
z̃j −

1

2

)

+

(
(δλλi

− δ′λiλj
)
1

z̃i
+ (δλλj

− δ′λiλj
)

1

z̃j

)
m2
Q

(pi + pj)2

]}
;

• g → g(pi, λi) + g(pj, λj), with mi = mj = mij = 0 and

〈λ′|Va
gg|λ〉 = 8παsCA (4.24)

×
{
δλ′λ

(
δλλi

1 − z̃i + (1 − xij,a)
+

δλλj

1 − z̃j + (1 − xij,a)
− 2δ′λiλj

)

+
δ′λiλj

pipj

[
z̃ip

µ
i − z̃jp

µ
j

][
z̃ip

ν
i − z̃jp

ν
j

]
ǫ∗µ(p̃ij, λ

′)ǫν(p̃ij , λ)

+δλ′λ
[
δλλi

(1 − 2z̃i) + δλλj
(1 − 2z̃j)

]
}

;

where

z̃i =
papi

papi + papj
, z̃j =

papj
papi + papj

. (4.25)

As in the previous case, terms in the last square bracket vanish upon summation over

emitter pair helicities.
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4.3 Initial-state emitter and final-state spectator

The single dipole contribution is

Dai
j (. . . , {pi, λi}, . . . , {pj , λj}, . . . ; {pa, λa}, . . . ) = − 1

2papi

1

xij,a
(4.26)

×
∑

λ′,λ

〈. . . , {p̃j , λj}, . . . ; {p̃ai, λ′}, . . . |
T j · T ai

T 2
ai

Vai
j | . . . , {p̃j , λj}, . . . ; {p̃ai, λ}, . . . 〉 ,

where

xij,a =
papi + papj − pipj

papi + papj
, (4.27)

and the momentum remapping is given by

p̃µj = pµi + pµj − (1 − xij,a)p
µ
a , (4.28)

p̃µai = xij,ap
µ
a . (4.29)

As implicitly assumed above, we require both emitter masses to vanish, i.e. mi = mj =

mij = 0. There are four cases to consider

• q(pa, λa) → g(pi, λi) + q, with

〈λ′|Vqg
j |λ〉 = 8παsCF (4.30)

×
{

1

1 − xij,a + ui
− δ′λaλi

(1 + xij,a)

}
δλ′λδλλa

;

• g(pa, λa) → q̄(pi, λi) + q, with

〈λ′|Vgq̄
j |λ〉 = 8παsTR (4.31)

×
{
δλaλi

(1 − 2xij,a(1 − xij,a)) + [1 − 2δλaλi
]x2
ij,a

}
δλ′λδ

′
λλi

;

• q(pa, λa) → q(pi, λi) + g, with

〈λ′|Vqq
j |λ〉 = 8παsCF (4.32)

×
{
δλ′λδ

′
λλa

δλaλi
xij,a

+δλaλi

1 − xij,a
xij,a

ui(1 − ui)

pipj

(
pµi
ui

−
pµj

1 − ui

)(
pνi
ui

−
pνj

1 − ui

)
ǫµ(p̃ai, λ

′)ǫ∗ν(p̃ai, λ)

+δλ′λδλaλi
[2δλλa

− 1]

}
;
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• g(pa, λa) → g(pi, λi) + g, with

〈λ′|Vgg
j |λ〉 = 8παsCA (4.33)

×
{
δλ′λ

[
δλλa

1 − xij,a + ui
+ δ′λλi

(−1 + xij,a(1 − xij,a))

]

+δλaλi

1 − xij,a
xij,a

ui(1 − ui)

pipj

(
pµi
ui

−
pµj

1 − ui

)(
pνi
ui

−
pνj

1 − ui

)
ǫµ(p̃ai, λ

′)ǫ∗ν(p̃ai, λ)

+δλ′λ
[
(δλλa

− δ′λλi
) + (δλaλi

− δλλa
)2xij,a

]
}

;

where

ui =
pipa

pipa + pjpa
. (4.34)

4.4 Initial-state emitter and initial-state spectator

The single dipole contribution is

Dai,b(. . . , {pi, λi}, . . . ; {pa, λa}, {pb, λb}) = − 1

2papi

1

xi,ab
(4.35)

×
∑

λ′,λ

〈.̃ . .; {p̃ai, λ′}, {pb, λb}|
T b · T ai

T 2
ai

Vai,b|.̃ . .; {p̃ai, λ}, {pb, λb}〉 ,

where

xi,ab =
papb − pipa − pipb

papb
, (4.36)

and the momentum remapping is given by

p̃µai = xi,ab p
µ
a , (4.37)

k̃µj = kµj − 2kj · (K + K̃)

(K + K̃)2
(K + K̃)µ +

2kj ·K
K2

K̃µ , (4.38)

where the index j runs over all final states and the momenta Kµ and K̃µ are defined by

Kµ = pµa + pµb − pµi ,

K̃µ = p̃µai + pµb .
(4.39)

We require again both emitter masses to vanish, i.e. mi = mj = mij = 0. There are four

cases to consider

• q(pa, λa) → g(pi, λi) + q, with

〈λ′|Vqg,b|λ〉 = 8παsCF (4.40)

×
{

1

1 − xi,ab
− δ′λaλi

(1 + xi,ab)

}
δλ′λδλλa

;
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• g(pa, λa) → q̄(pi, λi) + q, with

〈λ′|Vgq̄,b|λ〉 = 8παsTR (4.41)

×
{
δλaλi

(1 − 2xi,ab(1 − xi,ab)) + [1 − 2δλaλi
]x2
i,ab

}
δλ′λδ

′
λλi

;

• q(pa, λa) → q(pi, λi) + g, with

〈λ′|Vqq,b|λ〉 = 8παsCF (4.42)

×
{
δλ′λδ

′
λλa

δλaλi
xi,ab

+δλaλi

1 − xi,ab
xi,ab

pa · pb
pi · pa pi · pb

(
pµi −

pipa
pbpa

pµb

)(
pνi −

pipa
pbpa

pνb

)

×ǫµ(p̃ai, λ′)ǫ∗ν(p̃ai, λ) + δλ′λδλaλi
[2δλλa

− 1]

}
;

• g(pa, λa) → g(pi, λi) + g, with

〈λ′|Vgg,b|λ〉 = 8παsCA (4.43)

×
{
δλ′λ

[
δλλa

1 − xi,ab
+ δ′λλi

(−1 + xi,ab(1 − xi,ab))

]

+δλaλi

1 − xi,ab
xi,ab

pa · pb
pi · pa pi · pb

(
pµi −

pipa
pbpa

pµb

)(
pνi −

pipa
pbpa

pνb

)

×ǫµ(p̃ai, λ′)ǫ∗ν(p̃ai, λ) + δλ′λ
[
(δλλa

− δ′λλi
) + (δλaλi

− δλλa
)2xi,ab

]
}
.

5 Implementation and example results

As part of the present study, we have implemented the complete formalism given in the

previous section within the framework of Helac-Phegas. The software can be obtained

from the Helac-Phegas web page [85]. The main features can be summarized as follows

1. Arbitrary processes

We use the matrix element generator of Helac-Phegas, which means that any

process, which can be calculated by this generator is also accessible to the dipole

subtraction software. The only limitation is given by the models implemented. Cur-

rently, the full Standard Model, both electroweak and QCD, is available. Let us

stress that the subtraction is only applied to partons, and the software is therefore

devised for NLO QCD corrections. The observables are specified by user defined jet

functions and histogramming routines. The present implementation contains a built

in kT jet algorithm.
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2. Massive and massless external states

We have implemented the formulae as given in the previous section. This allows us

to treat massive and massless partons on the same footing. As noted in the previous

section, we assume the initial state partons to be massless.

3. Helicity sampling for partons

The integration over the phase space is done in three stages. At first, the phase space

is optimized using multi-channel methods. In this phase, the user can either evaluate

the subtracted matrix elements with full summation, or use a flat helicity Monte

Carlo, where all helicity configurations occur with the same frequency. Since this part

is only used to determine the weights of the different channels we recommend to run in

the latter mode, which is fast and gives exactly the same results as full summation.

In a second stage, the phase space measure is fixed and the helicity configuration

sampling weights are determined by evaluating the subtracted matrix element for

all helicity configurations. The optimization consists of a standard minimization of

the variance [80], but is as slow as full summation (in fact, this is full summation).

We recommend to run this phase on a few hundreds up to a few thousand points.

The optimum depends strongly on the number of helicity configurations. Finally, in

the last stage, the matrix element is evaluated with helicity sampling, which updates

itself at user specified intervals in the number of accepted events. These intervals

should be long enough, to allow the channels which have a low weight to accumulate

enough events. We recommend a number of the order of ten thousand. All the

parameters can be changed by the user. Obviously, one can make a complete run

using full helicity summation of flat Monte Carlo. As with any simulation, some

experimentation is needed to obtain best results.

4. Random polarizations for non-partons

Non-partons can be treated in two different ways as far as their polarization is con-

cerned. The user can either require random phases as described in section 2, or

treat non-partons on the same footing as partons. We recommend to use random

polarizations.

5. Restrictions on the subtraction phase space

We have implemented a restriction on the phase space of the subtraction as proposed

in [6]. This amounts to only including dipole subtraction terms, which satisfy the

following criteria

(a) final-final dipoles

yij,k < αFFmax ; (5.1)

(b) final-initial dipoles

1 − xij,a < αFImax ; (5.2)
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(c) initial-final dipoles

ui < αIFmax ; (5.3)

(d) initial-initial dipoles

ṽi ≡
papi
papb

< αIImax ; (5.4)

where the occurring variables have been defined in the previous section. The four

αmax parameters can be freely chosen by the user. A value of 1 amounts to no

restriction. Best results are obviously obtained with small αmax, since the matrix

element for this setting behaves largely as the real emission alone and the phase

space optimizer has been designed to emulate such behavior. Besides the phase

space restriction, we have also included a technical cut. Using the above formulae

one can evaluate a minimal value of the four parameters given on the left hand side

for all dipoles. Let us denote it by αmin. We reject a phase space point completely if

αmin < αcut . (5.5)

The value of αcut should be specified by the user. Let us stress that the technical cut

is necessary to avoid numerical instabilities in the cancellation between real emission

and the dipoles. However, there are also cutoffs in the phase space generator, which

are needed to avoid numerical instabilities in the generator itself.

6. Phase space integration

The integration is completely controlled by Phegas [74], which is a multi-channel

phase space generator based on Feynman graphs. The only modification, which was

necessary was the simultaneous treatment of both positive and negative weights. In

fact, the user can specify whether only positive, negative or both weights should be

included. This does not modify the histograms, however, which always contain the

full result.

We should mention that in the early stages of the development, we have adapted the

kinematics remapping routine from Mcfm [86]. Although, a minute part of the final code,

it was important for debugging to be able to rely on the correctness of the kinematics.

This software has been tested against MadDipole [87]. We would like, however, to

point out that instead of comparing arbitrary processes, we concentrated on the individual

parts of the code. In fact, the only sensitive code, which cannot be tested against the

official version of Helac-Phegas is contained in the kinematics remapping, the color

correlators and the dipole subtraction formulae themselves. In consequence, to ensure the

correctness of the implementation it was sufficient to compare the latter for all independent

cases. These are summarized in table 1. Of course, we could only compare the dipole

subtraction terms after summation over helicities. The expressions for independent helicity

configurations have been tested by checking for cancellation in the appropriate limits.
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E0 - massless emitter, S0 - massless spectator, EM - massive emitter, SM - massive spectator, EI - initial

state emitter, EF - final state emitter, SI - initial state spectator, SF - final state spectator, X - check, � -

does not occur.

E0/S0 E0/SM EM/S0 EM/SM

EI/SI

g → gg X � � �

g → qq X � � �

q → qg X � � �

q → gq X � � �

EI/SF

g → gg X X � �

g → qq X X � �

q → qg X X � �

q → gq X X � �

E0/S0 E0/SM EM/S0 EM/SM

EF /SI

g → gg X � � �

g → qq X � X �

q → qg X � X �

q → gq X � X �

EF /SF

g → gg X X � �

g → qq X X X X

q → qg X X X X

q → gq X X X X

Table 1. Independent dipole splitting formulae, which need to be tested in order to ensure the

correctness of the code. In the splitting description, e.g. g → gg, the left hand side particle always

denotes the virtual state.

Process Real Emission + Dipoles Real Emission Nr Of Dipoles

[msec] [msec]

gg → ggg 3.8 1.0 27

gg → gggg 8.5 2.6 56

gg → ggggg 300 42 100

ud̄ → W +gggg 9.3 2.4 56

gg → tt̄bb̄g 12 2.9 55

Table 2. The CPU time needed to evaluate the real emission matrix element together with all of

the dipole subtraction terms per phase-space point (this corresponds to αmax = 1). All numbers

have been obtained on an Intel 2.53 GHz Core 2 Duo processor with the Intel Fortran compiler

using the -fast option.
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Figure 1. Distribution of the invariant mass mbb̄ of the bottom-anti-bottom pair (a), distribution

in the transverse momentum pT
bb̄

of the bottom-anti-bottom pair (b) and distribution in the rapidity

ybb̄ of the bottom-anti-bottom pair (c) for pp(gg) → tt̄bb̄g +X at the LHC for two different values

of αmax: 0.01 (red solid curve) and 1 (blue dashed curve).

Additionally, in table 2 we have presented the measured time needed to evaluate the

real emission matrix element and the subtraction terms. We note that the inclusion of

the full set of subtraction terms slows down the computation by a factor of about three

to four in most cases. However, since there is a restriction in the subtraction phase space,

we expect (and indeed observe in practice) that the true additional cost of the subtraction

does not exceed the cost of the real emission itself. Therefore, an improvement in the

speed of the calculation will not be obtained by replacing the dipole formalism by another

subtraction. In fact, a further substantial speed up can be obtained by turning to Monte

Carlo summation over color configurations. What is the source of the high cost of the
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evaluation of the subtracted real radiation in comparison to leading order real radiation?

It lies in the phase space integration. The integrand has now a much more complicated

behavior, and therefore multi-channel optimization based on Feynman graphs does not lead

to such a drastic improvement of the convergence.

As a final demonstration of the power of our implementation, we have performed a

simulation of the gg → tt̄bb̄g subprocess, which is part of the complete NLO calculation

of pp → tt̄bb̄ + X. We have used the same set up as [18]. In particular, we have taken√
s = 14 TeV as center of mass energy and a top quark mass of mt = 172.6 GeV. The b

quark has been kept massless. In order to obtain jets, we have used the kT algorithm [88–90]

with jet recombination of partons with a pseudo-rapidity of |η| < 5 with ∆R < 0.8.

Additionally, we required the b jets to satisfy pT,b > 20 GeV, |yb| < 2.5. The phase space

of the top quarks has not been restricted. The non-perturbative input of our computation

has been given by the CTEQ6M PDFs [91, 92]. Figure 1 (a-c) contains the invariant

mass, transverse momentum and rapidity distributions of the bb̄ pair for αmax = 0.01 and

αmax = 1 (all parameters set to the same value). The impact of the variation of αmax is

cleary visible. In fact, for both values, the shape resembles that of the leading order result,

besides the normalization. On the other hand, for larger values of αmax a relatively small

negative dip for low invariant masses can be observed in the mbb̄ distribution. The latter

is due to the strong enhacement of the dipole contributions for low mbb̄.

6 Conclusions

We have presented an extension of the dipole subtraction formalism to arbitrary helicity

eigenstates. Not only did we provide appropriate formulae, but also a public implementa-

tion, which contains both the subtracted real radiation and integrated dipoles. The results

of our tests show that with this software, calculations, which are of current phenomeno-

logical interest, can be performed fully automatically within tractable time. In the nearest

future, we will apply this technology to the processes from the “NLO wishlist” [93] using

the automated 1-loop extension of Helac [41] for the virtual corrections.
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